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Abstract-In principle, connected sensors allow effortless 
long-term self-monitoring of health and well ness that can help 
maintain health and quality of life. However, data collected 
in the "wild" may be noisy and contain outliers, e.g., due 
to uncontrolled sources or data from different persons using 
the same device. The removal of the "outliers" is therefore 
critical for accurate interpretation of the data. In this paper 
we study the detection and elimination of outliers in self­
weighing time series data obtained from connected weight 
scales. We examined three techniques: (1) a method based on 
autoregressive integrated moving average (A RIMA) time series 
modelling, (2) median absolute deviation (MAD) scale estimate, 
and (3) a method based on Rosner statistics. We applied these 
methods to both a data set with real outliers and a clean data 
set corrupted with simulated outliers. The results suggest that 
the simple MAD algorithm and ARIMA performed well with 
both test sets while the Rosner statistics was significantly less 
effective. In addition, the ARIMA approach appeared to be 
significantly less sensitive to long periods of missing data than 
MAD and Rosner statistics. 

Keywords-weight time series analysis, outlier detection, 
ARIMA modeling, MAD scale estimate, Rosner statistics 

I. INTRODUCT ION 

Throughout the past hundred years people's lifestyle has 

changed significantly due to highly automated machines 

evolving day by day and as a result, forced us to be less 

active than our ancestors. This lack of physical activity 

combined with unhealthy eating habits have led to one 

of the most severe today's health problems; obesity. Over­

weight and obese individuals are at increased risk of having 

heart problems, diabetes, musculoskeletal disorders and high 

blood pressure [1]. 
Different methods have been studied and developed to 

help people change their behavior for example by modifying 

eating habits as well as physical activity patterns [2]-[4]. 
However, according to recent studies, adherence to such 

behavioral therapies represents a significant challenge. In 

this respect, one of the most effective approaches to mitigate 

this challenge suggested by behavioral therapists was self­

monitoring combined with automatic feedback as a central 

principle for weight management [5], [6]. The working 

hypothesis is that the insights of how everyday behavior 
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affects their weight helps people either lose or maintain 

their weight. In particular they will get rough notions about 

the long-term changes in their weight occurring over time. 

Hence, regular self-weighing can play an important role in 

long-term weigh-loss maintenance. 

A variety of sensors and mobile applications are available 

for consumers to support behavior change by means of self­

monitoring. Those sensors collect and display a wealth of 
personal health and wellness data. For self-weighing, mod­

ern connected weight scales automatically transmit weight 

data to network servers so that users can access their weight 

on-line or through a mobile phone application. The availabil­

ity of long-term weight time series may also help coaches to 

get insight about individuals' behaviors through weekly and 

annual weight variations [7] or e.g. the correlation between 

self-weighing frequency and weight change [8]. Equipped 

with this information it would be possible to optimize just­

in-time adaptive interventions. 

Self-monitoring with connected sensors is done during 

daily life in uncontrolled conditions, which may result in 

data that is contaminated by outliers. They may arise from 

conditions where different users are using the same devices, 
or due to some external uncontrolled influences; in self­

weighing, exceptionally heavy clothing or carrying some 

objects during measurement may lead to wide deviations 

from the real body weight. Scales may also be used to 

weigh other things than persons, such as pets, suitcases or 

individuals with (and without) suitcases. In order to support 

accurate analysis of subtle changes and patterns in body 

weight, removal of these outliers is necessary. 

A challenge in detecting outliers arises from the fact that 

people's adherence to self-weighing varies temporally, and 

hence missing data with long gaps between consecutive 

measurements can occur. These long gaps of time without 

measurements may lead to changes in weight levels [8]. On 

the other hand, even 2-3 percent variation of body weight 

can occur within a day [8]. These fluctuations alone can 

easily mask subtle changes and delay detection of significant 

trends. Therefore, weight dynamics need to be taken into 

account. 



In this paper, we examined three different outlier detection 

methods based on: (1) autoregressive integrated moving 

average (ARIMA) specification of time series [9], (2) 
median absolute deviation (MAD) scale estimate [10], [11], 
and (3) Rosner statistics anomaly detection [12]. 

These three techniques were applied to two different types 

of test sets; the first one comprised simulated outliers added 

to 20 clean real weight time series and the second one 

included 20 visually annotated real weight time series that 

contained outliers. 

II. METHODS 

A. Materials 

1) Simulated data: We randomly selected 20 clean (i.e. 

no visually observable outliers in the time series) weight 

time series, whose length varied between 300 and 350 
measurements taken from Withings (Withings, Paris, France) 

weight scale users. Any time series with possible anomalies 

were excluded from the data set and replaced with another 

randomly selected time series. The total number of weight 

measurements included in this data set is 6494. 
On average 4.5 percent of the data points in each of the 

20 clean weight time series were randomly selected and 
intentionally corrupted with normally distributed noise. That 

is, the original data points were replaced with simulated 

outliers. Mean value of half of the outliers was equal to 

mean value of original weight time series increased by 5 
kg. The mean value of the other half was equal to mean 
value of the original weight time series minus 10 kg. The 

standard deviation of the outliers was defined equal to the 

median standard deviation of the time series included in 

the 20 clean time series. The goal was to simulate outliers 

due to occasional interference by weighing two individuals 

different from the target person. The total number of outliers 

simulated in this test set is 294. 
2) Real data: A subset of 20 time series including 

outliers were randomly selected among a set of 10,000 self­

weighing time series database. A time series was included 

if it was visually assessed to contain at least one outlier. 

Outliers were visually annotated by one researcher by visual 

inspection. The number of weight measurements included 

in this data set altogether is 14112 in which 68 points were 

visually identified to be outliers. 

B. Data analysis 

The data analysis and implementation of the algorithms 

were done by R version 3.2.1. The ARIMA-based outlier 

detection algorithm used in this study was deployed from the 

package called tsoutliers [l3]. The Rosner statistics anomaly 

detection test deployed EnvStats package [14]. 

C. Outlier detection methods: AR1MA approach 

A non-seasonal time series named as Xt follows an 

autoregressive integrated moving average (ARIMA) process 
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of order (p,d,q) if the dth difference of the Xt can be con­

sidered as an autoregressive moving average (ARMA)(P,q) 

process. Autoregressive (AR) term refers to the fact that any 

value of a variable X at time point t can be explained by p 

previous values of X at time points t - p, t - p + 1, ... , t - 1. 
Moving average (MA) part of the model denotes the forecast 

error at time instant t can be explained by q past forecast 

errors at time points t - q, t - q + 1, ... , t - 1. A general 

representation of ARIMA models called seasonal autoregres­

sive integrated moving average model used for the outlier 

detection was described in [15], [16]. 
The ARIMA-based approach can detect four types of 

outliers described in [9], namely (1) a level shift outlier 

(LS), (2) an innovational outlier (10), (3) an additive outlier 

(AO), and (4) a temporary change (TC). The detection 

procedure based on ARIMA specification can be divided 

into three iterative steps as follows [l3]. 
I. Locate outliers: First the algorithm computes the initial 

ARIMA model parameters based on the maximum likeli­

hood (ML) or minimum conditional sum of squares (CSS) as 

specified by the ARIMA choice of parameters. Subsequently, 

it checks every data point of the series to get four different 

T-statistics corresponding to the four above-mentioned types 

of outliers. The algorithm then chooses the largest absolute 
value of each time point T-statistics as a dominant outlying 

effect. The dominant T-statistics is compared to a critical 

value C which was specified for the function in advance. 

This threshold variable is used to decide whether the time 

point can be considered as an anomaly or a valid data point 

that must be kept unchanged. 

II. Iterate: After finding a set of m potential outlying 

points, the algorithm computes new T-statistics for these 

data points based on outlier effects and estimated residuals 

obtained from the fitted ARIMA model. In order to make 

sure valid data points are not included in the set of outliers 

the algorithm considers a condition by which every outlying 

point with T-statistics smaller than C in absolute value is 

removed from the set of outliers. Then, again new T-statistics 

will be computed based on this new set of outliers and 

the above-mentioned condition is tested iteratively until the 

point no T-statistics smaller than C is found within the set 

of outlying data points. 

III. Remove outliers: The estimated effects of identified 

outliers are removed from the model and new ARIMA 

parameters will be calculated based on ML-CSS criteria. 

D. Outlier detection methods: MAD 

Detection of outliers using median absolute deviation 

implements a moving window of length k centered at each 

sample point and estimates two variables: The first one is the 

median of the window and the second one is a scale estimate, 

namely the median absolute deviation (MAD). The values of 

M ADi = mediandlXi -medianj(Xj)ll are scale estimate 

of Xi within the window. Each Xi is then compared to the 



corresponding M ADi . If the absolute deviation of the data 
point is greater than the threshold, then the data point is 

considered as an anomaly [10], [11]. A threshold value to 
controls sensitivity of the algorithm to local fluctuations. The 

greater the to, the less sensitive is the outlier detector. 

E. Outlier detection methods: Rosner statistics 

Rosner statistics is an anomaly detection procedure appli­

cable for time series of normally distributed samples. The 

computation of Rosner statistics is based on the assumption 

that both the the clean data and the outliers are normally 

distributed which means after removing k outlying data 

points, the series should be distributed normally. 

Basically in Rosner statistics the highest k value that can 

be chosen for a time series of length n is the largest integer 

smaller than {'o. The detail description of Rosner's anomaly 

detection algorithm can be found in [12]. 
/. Locate outliers: At the outset, the algorithm finds the k 

extreme studentized deviates (ESD statistic) values described 

in detail in [12]. Then the most deviant outlier, is removed 

and the algorithm recomputes the ESD values for the remain­

ing k -1 points. The algorithm iterates to compute the ESD 

values for the remaining until all k points are evaluated. 

At the end of this step a series of ESDs are recalculated 

based on the sample sizes of n, n - 1, n - 2, ... , n - k + 1 
consecutively. 

II. Remove outliers: In order to determine which one of 

the k potential anomalies are likely outliers, they need to be 

successively compared with critical values of ESD statistics 

corresponding to each sample size of n, n-1, ... , n-k+ 1. If 

ESD of the kth outlying point (the least extreme studentized 

statistic) is larger than corresponding kth critical value then 

all of the suspected k data points are outliers. Otherwise, this 

point will be removed from the set of outliers. The algorithm 

compares the subsequent extreme outlying points to their 

equivalent critical value. 

This procedure continues until all outlying data point with 

ESD bigger than their equivalent critical value are removed 

or all of the k potential outlying points were tested [12]. 

III. RE SULT S  AND DISCUSSION 

Table I depicts the settings used for corresponding vari­

ables. These values were obtained based on receiver oper­

ating characteristic curves of each technique. The threshold 

values that revealed the best diagnostic performance were 

chosen to be used as settings of corresponding algorithms. 

The results of outlier detection in real annotated time 

series are given in Table II. It can be observed that MAD 

scale estimate has the best sensitivity with more than 98 
percent true detection of outliers. After that, sensitivity of 

ARIMA approach and Rosner statistics were 93 and 81 
percent respectively. The specificities of all three algorithms 

were very high, all beyond 98 percent true identification of 

correct data points. Fig. 1 clearly illustrates a case where 
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Table I 
SETTINGS OF THE IMPLEMENTED ALGORITHMS. 

Variable Value 
ARIMA critical value (C) 2.5 
MAD threshold value (to) 2 
MAD window length (k) 30 

Rosner error rate (a) 0.5 

Table II 
THE RESULTS OF OUTLIER DETECTION IN REAL ANNOTATED TEST SET. 

Methods Sensitivity Specificity 
ARIMA 0.93 0.98 

MAD 0.98 0.99 
Rosner 0.81 0.99 

implemented methods detected outlying points in a real 

annotated weight time series. 

Table III shows outlier detection performance in simulated 

test set. The results suggest that ARIMA outlier detection 

performs slightly better than MAD scale estimate and sig­

nificantly better than Rosner statistics in terms of sensitivity. 

The corresponding specificity of all three methods is again 

quite high and approximately equal which means almost all 

of the correct data points were classified correctly. Fig. 2 
and Fig. 3 reveal two examples of how these three methods 
removed outliers from simulated test set. There are big 

differences between the sensitivity of Rosner statistics and 

two other methods in Fig. 2 while in Fig. 3 all three methods 

performed excellent. As explained deeper in the following 

paragraph, the reason for such an enormous performance 

degradation in Rosner statistics in Fig. 2 can be due to 

masking effect of the level shift occurred at the beginning 

of time series. 

By analyzing simulated time series individually, it was 
observed that there were a few cases where the sensitivity 

of MAD and Rosner statistics dropped by approximately 10 
and 50 percent respectively while the sensitivity of ARIMA 

approach was still reasonably high. The main reason for 

these outcomes is the effect of sudden level shifts in vicinity 

of undetected outliers. These level shifts occur usually when 

there is either sudden weight gain or sudden weight loss after 

a long period of time of missing measurements. To explain 

the effect of level shifts resulted by gaps of measurements, 

one of the simulated cases corrupted by artificial outliers is 

shown in Fig. 4. There are two major level shifts occurring at 

time instants 100 and 200 approximately. These level shifts 

are the main causes of performance degradation in MAD 

and Rosner statistics. As can be seen in Fig. 4( c) ARIMA 

approach detected almost all of the outliers. However, nei­

ther MAD (Fig. 4(d)) nor Rosner statistics (Fig. 4(e)) was 
able to identify outlying points occurred in neighborhood of 

level shifts. ARIMA appears to be the best choice for cases 
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Figure 1. A real example of outlier detection using implemented algorithms: (a) original time series, results of (b) ARIMA approach, (c) MAD scale 
estimate, and (d) Rosner statistics. Red dots denote visually annotated outliers while green dots are the ones detected by algorithm. 

Table III 
THE RESULTS OF OUTLIER DETECTION IN SIMULATED TEST SET. 

Methods Sensitivity Specificity 
ARIMA 0.93 0.96 

MAD 0.94 0.96 
Rosner 0.65 0.99 

where level shifts can mask anomalies in their vicinity. This 

similar masking effect took place in four of the simulated 

time series included in simulation test set. Therefore, the 

average sensitivity of Rosner statistics dropped significantly 

there. 

Owing to occurrence of level shifts the standard deviation 

of time series often increases. Consequently the increase 

in the standard deviation of the time series, reduces the 

sensitivity of Rosner statistics and MAD scale estimate be­

cause these techniques ignore sequential aspects of the time 

series. To clarify this issue, Table IV depicts Pearson corre­

lation coefficients between standard deviation of time series 

and diagnostic performance of implemented algorithms for 
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Table IV 
PEARSON CORRELATION COEFFICIENTS AND CORRESPONDING 

p-VALUES BETWEEN STANDARD DEVIATION OF TIME SERIES AND 
DIAGNOSTIC PERFORMANCE OF ALGORITHMS. 

Method r p-value 
ARIMA -0.16 0.50 

MAD -0.44 0.049 
Rosner -0.98 < 0.001 

simulated data set. It is obvious that ARIMA approach 

performed quite independent from standard deviation of time 

series. In contrast, there are correlations between standard 

deviation and performance of MAD and Rosner statistics 

with r coefficients equal -0.44 and -0.98 respectively. 

Receiver operating characteristic (ROC) curves depicted 

in Fig. 5 were estimated based on statistical performance 

of simulated test set. Based on Fig. 5 it is conceivable 

that by decreasing critical value (C) from 5 to 2.25 there 

was a gradual increase in sensitivity in contrast to the 

decline of specificity. Similarly, corresponding sensitivity 



Figure 2. An example of a time series from simulated test set: (a) original time series, (b) corrupted time series, results of (c) ARIMA, (d) MAD scale 
estimate, and (e) Rosner statistics. Red dots describe simulated outliers while green dots represent detected outliers. 

Figure 3. An example of a time series from simulated test set: (a) original time series, (b) corrupted time series, results of (c) ARIMA approach, (d) 
MAD scale estimate, and (e) Rosner statistics. Red dots represent simulated outliers while green dots denote detected outliers. 
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Figure 4. An example of a time series from simulated test set: (a) original time series, (b) corrupted time series, results of (c) ARIMA approach, (d) 
MAD scale estimate, and (e) Rosner statistics. Red dots represent simulated outliers while green dots denote detected outliers. 

and specificity of MAD scale estimate changed by reducing 

the threshold value (to) from 6 to 2. Concerning ROC 

curve of Rosner statistics, it can be observed that by slowly 

increasing the error rate (0:), there were slight improvements 

in the sensitivity; however, the specificity remained quite 

high without any comprehensible declines. Therefore, here 

the best critical value (C) for ARIMA approach is 2.5, the 

most efficient threshold value (to) for MAD scale estimate is 

2, and ultimately the best error rate (0:) for Rosner statistics 

can be 0.99. Although the optimum value of Rosner statistics 

error rate is 0.99, there were no significant changes in the 

results of outlier detection between error rate value 0.5 and 
0.99. The value of 0: was chosen to be 0.5 for the whole 

parts of this study. The area under curve (AUC) is 0.97, 
0.96, and 0.86 respectively for ARIMA, MAD, and Rosner 

statistics. 

The advantage in performance of ARIMA comes at a cost 

in computational complexity. The average processing time of 

ARIMA approach is rv 100 times longer than the other two 

methods as illustrated in Table V. This can be considered 

as the most significant drawback of using such a complex 

iterative algorithm. 

IV. CONCLUSION AND FUTURE WORK 

Based on our preliminary investigation, the median ab­

solute deviation scale estimate can be a good candidate for 
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Table V 
AVERAGE PROCESSING TIME OF ALGORITHMS USED IN THIS STUDY. 

Methods Average Processing Time 
ARIMA 87.7(s) 

MAD 0.017(s) 
Rosner 0.0025(s) 

analysis of anomalies in the context of weight time series. It 

is computationally light and simple to implement. However, 

its performance was slightly degraded in the presence of 

level shifts and gaps in the data. 

The results of our study suggest that ARIMA outlier 

detection approach is superior to other methods but the 

algorithm is computationally expensive compared to other 

techniques. An additional shortcoming of the ARIMA-based 

approach not mentioned earlier is its low power in detection 

of outliers at the very beginning of time series. 

A method that constitutes the strengths of both MAD scale 

estimate and ARIMA anomaly detection could be useful. For 

instance a serial architecture of MAD followed by ARIMA 

approach may compensate the deficiencies of both methods. 

However computational problems of ARIMA approach must 

be solved in advance. 

Rosner statistics anomaly detection method used in this 

study performed less well than the other techniques. We 



Figure 5. ROC curves corresponding to (a) ARIMA, (b) MAD, and (c) Rosner statistics. Points in the graphs represent threshold values. TPR and FPR 
denote true positive rate and false positive rate accordingly. 

suspect that some of the assumptions underlying this method 

may be violated in the real life weight sequences. It is pos­

sible, however that implementation of a windowed Rosner 

statistics may result in better outcomes accordingly. 
One limitation of this study is the fact that in real weight 

time series it is challenging to decide whether any data 
point can be considered as an outlier or a normal point. 

Therefore defining a ground truth based on visual inspection 

may sometimes lead to faulty decisions. By the same token, 

the results using the simulated outliers may not correspond 

to all real life situations. Adding contextual information in 

the future may alleviate these concerns. 
The specific characteristics of weight dynamics should be 

considered in order to assess whether weight change between 

neighboring observations given their temporal distance can 

be realistic. As a weak point, the temporal weight dynamics 

were not taken into account in this study. Therefore, one 

of the future challenges is to incorporate the information 

of time intervals between measurements into the outlier 

detection process. 
We acknowledge that the study of the outlier detection 

techniques presented in this paper are not comprehensive. 

Rather, this paper serves as a preliminary investigation of 

the topic. That is, in spite of obtaining acceptable results 
related to both data sets tested in this study, there were still 

some real cases where none of the implemented methods 

performed well. At last, combination of real time automatic 

assignment of measurements with techniques used in this 

study can be worth to examine in future. 
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